• 进入"运维那点事"后,希望您第一件事就是阅读“关于”栏目,仔细阅读“关于Ctrl+c问题”,不希望误会!

Python代码调试方法

Python编程 彭东稳 7年前 (2017-11-01) 22673次浏览 已收录 0个评论

程序能一次写完并正常运行的概率很小,基本不超过1%。总会有各种各样的bug需要修正。有的bug很简单,看看错误信息就知道,有的bug很复杂,我们需要知道出错时,哪些变量的值是正确的,哪些变量的值是错误的,因此,需要一整套调试程序的手段来修复bug。

一、print

第一种方法简单直接粗暴有效,就是用print()把可能有问题的变量打印出来看看:

执行后在输出中查找打印的变量值:

print()最大的坏处是将来还得删掉它,想想程序里到处都是print(),运行结果也会包含很多垃圾信息。所以,我们又有第二种方法。

二、断言

凡是用print()来辅助查看的地方,都可以用断言(assert)来替代:

assert的意思是,表达式n != 0应该是True,否则,根据程序运行的逻辑,后面的代码肯定会出错。

如果断言失败,assert语句本身就会抛出AssertionError

程序中如果到处充斥着assert,和print()相比也好不到哪去。不过,启动Python解释器时可以用-O参数来关闭assert

关闭后,你可以把所有的assert语句当成pass来看。

三、logging

print()替换为logging是第3种方式,和assert比,logging不会抛出错误,而且可以输出到文件:

logging.info()就可以输出一段文本。运行,发现除了ZeroDivisionError,没有任何信息。怎么回事?

别急,在import logging之后添加一行配置再试试:

看到输出了:

这就是logging的好处,它允许你指定记录信息的级别,有debuginfowarningerror等几个级别,当我们指定level=INFO时,logging.debug就不起作用了。同理,指定level=WARNING后,debuginfo就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。

logging的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console和文件。

四、pdb

第4种方式是启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。我们先准备好程序:

然后启动,以参数-m pdb启动后,pdb定位到下一步要执行的代码-> s = '0',所以是还没有执行的代码,如下:

输入命令l来查看代码(分页显示):

然后输入命令n可以单步执行代码,一次一条:

当命令执行后,任何时候都可以输入命令p 变量名来查看变量:

如果命令没有被n执行,那么获取是会报错的。

输入命令q结束调试,退出程序:

这种通过pdb在命令行调试的方法理论上是万能的,但实在是太麻烦了,如果有一千行代码,要运行到第999行得敲多少命令啊。还好,我们还有另一种调试方法。

pdb.set_trace()

这个方法也是用pdb,但是不需要单步执行,我们只需要import pdb,然后,在可能出错的地方放一个pdb.set_trace(),就可以设置一个断点:

运行代码,程序会自动在pdb.set_trace()暂停并进入pdb调试环境,可以用命令p查看变量,或者用命令c继续运行:

这个方式比直接启动pdb单步调试效率要高很多,但也高不到哪去,偶尔排查问题使用还可以。所以一般最好的调试方法还是使用IDE。

五、IDE

如果要比较爽地设置断点、单步执行,就需要一个支持调试功能的IDE。目前比较好的Python IDE有PyCharm:

http://www.jetbrains.com/pycharm/

另外,Eclipse加上pydev插件也可以调试Python程序。

写程序最痛苦的事情莫过于调试,程序往往会以你意想不到的流程来运行,你期待执行的语句其实根本没有执行,这时候,就需要调试了。

虽然用IDE调试起来比较方便,但是最后你会发现,logging才是终极武器,因为程序上线后就需要通过日志的方式来记录异常问题了。

原文:廖雪峰大神的博客


如果您觉得本站对你有帮助,那么可以支付宝扫码捐助以帮助本站更好地发展,在此谢过。
喜欢 (0)
[资助本站您就扫码 谢谢]
分享 (0)

您必须 登录 才能发表评论!